传统空调和冰箱制冷技术采用氟利昂或其它化合物制剂来实现制冷,氟利昂或其它化合物制剂的泄漏,对周围环境会造成一定的污染,更主要的是这些制冷剂对大气臭氧层具有强烈的破坏作用,已经相继被淘汰出局。而现代化高科技的半导体制冷技术,不需任何制冷剂,仅仅利用半导体的珀尔帖效应就能实现制冷。在致力于保护全球环境的今天,研制开发一种性能优越,对环境无害的制冷技术已经成为全球制冷技术科学研究领域的一个重要课题。
1、压缩式制冷技术
压缩式冷循环是目前技术成熟,应用最广泛的传统技术。理论上,最简单的压缩式制冷循环系统由:蒸发器、压缩机、冷凝器和膨胀阀四大部件组成,从蒸发器出来的氨的低温低压蒸气被吸入压缩机内,压缩成高压高温的过热蒸气,然后进入冷凝器。由于高压高温过热氨气的温度高于其环境介质的温度,且其压力使氨气能在常温下冷凝成液体状态,因而排至冷凝器时,经冷却、冷凝成高压常温的氨液。高压常温的氨液通过膨胀?时,因节流而降压,在压力降低的同时,氨液因沸腾蒸发吸热使其本身的温度也相应下降,从而变成了低压低温的氨液。把这种低压低温的氨液引入蒸发器吸热蒸发,即可使其周围空气及物料的温度下降而达到制冷的目的。从蒸发器出来的低压低温氨气重新进入压缩机,从而完成一个制冷循环。然后重复上述过程。
由于氟得昂被大量使用,导致近年来南极上空的臭氧空洞不断扩,1992年的哥本哈根国际会议将其列入了逐步禁用范围,1995年的维也纳国际会议对其规定的禁用日程为。目前其他制冷剂已经基本替代了氟利昂制冷剂作为压缩式冷的主要制冷剂。
2、吸附制冷
吸附制冷的基本原理是:多孔固体吸附剂对某种制冷剂气体具有吸附作用,吸附能力随吸附剂温度的不同而不同。周期性的冷却和加热吸附剂,使之交替吸附和解吸。解吸时,释放出制冷剂气体,并在冷凝器内凝为液体;吸附时,蒸发器中的制冷剂液体蒸发,产生冷量。
吸附制冷与常规制冷方式相比,其最大的优势在于利用太阳能和废热驱动,极少耗电,而与同样使用热量作为驱动力的吸收式制冷相比,吸附式制冷系统的良好抗震性又是吸收系统无法相比的。在太阳能或余热充足的场合和电力比较贫乏的偏远地区,吸附制冷具有良好的应用前景。
系统循环与结构的研究从工作原理来看,吸附制冷循环可分为间歇型和连续型,间歇型表示制冷是间歇进行的,往往采用一台吸附器;连续型则采用二台或二台以上的吸附器交替运行,可保障连续吸附制冷。如果吸附制冷单纯由加热解吸和冷却吸附过程构成,则对应的制冷循环方式为基本型吸附制冷循环。
吸附制冷系统自身的改进吸附制冷系统能否最终在空调领域取得自己稳固的地位,最主要还要依靠吸附制冷系统自身性能的提高。在COP、单位质量吸附剂制冷量、单位时间制冷量的提高等研究方向上。近几年来,研究人员在吸附工质对方面的研究始终没有停止,从理论和实验两个方面对各种工质对的工作特性进行了广泛的研究。综合考虑强化吸附剂的传热传质性能,开发出较为理想的、环保型吸附工质对,使得吸附制冷技术工艺大幅提高。
3、半导体制冷技术
导体的热电效应主要包括:塞贝克效应、珀尔帖效应、汤姆逊效应、焦耳效应和傅里叶效应。而半导体制冷技术是利用了珀尔帖效应。珀尔帖效应是塞贝克效应的逆效应,珀尔帖效应所产生的热量称为珀尔帖热,其大小与回路的电流强度成正比,方向将随着电流方向的改变而发生变更,即冷端与热端互换。其机理主要是电荷载体在不同的材料中处于不同的能量级,在外电场的作用下,电荷载体从高能级的材料向低能级的材料运动时,便会释放出多余的能量。反之,电荷载体从低能级的材料向高能级的材料运动时,需从外界吸收能量。能量在不同材料的交接面以热的形式放出或吸收。
半导体制冷技术的优点:无运动部件,因而工作时无噪声,无磨损、寿命长,可靠性高。对环境无污染。不受重力场影响,在航天航空领域中有广泛的应用。作用速度快,可通过电流大小来调节制冷能力。尺寸小,重量轻。半导体制冷器虽有许多优点,但也有一些缺点有待克服。半导体制冷器只能用作小功率制冷器。只能使用直流电源。电偶堆元件采用高纯稀有材料,再加上工艺条件尚未十分成熟,导致元件成本比较高,目前还不能在普通制冷领域广泛使用。
半导体制冷器作为先进的无污染制冷器材,将在工农业、医疗、科研、国防等领域得到广泛的应用。半导体制冷器也使用在车辆、核潜艇、驱逐舰、深潜器、减压舱、地下建筑等特殊环境下的空调、冷藏和降湿装置。随着制冷性能的不断提高,成本逐渐降低,半导体制冷器必将得到广泛的应用。
4、热声制冷
除了在制冷剂方面的进展,在新的制冷理论及实践方面也有许多进展,如热声制冷技术的研究和运用。
热声制冷是21世纪以来发展的一种新的制冷技术,与传统的蒸汽压缩式制冷系统相比,热声热机具有无可比拟的优势:无需使用污染环境的制冷剂,而是使用惰性气体或其混合物作为工质,因此不会导致使用的CFCS或HFCS臭氧层的破坏和温室效应而危害环境;其基本机构是非常简单和可靠,无需贵重材料,成本上具有很大的优势;它们无需振荡的活塞和油密封或润滑,无运动部件的特点使得其寿命大大延长。热声制冷技术几乎克服了传统制冷系统的缺点,可成为下一代制冷新技术的发展方向。
所有的热声产品的工作原理都基于所谓的热声效应,热声效应机理可以简单的描述为在声波稠密时加入热量,在声波稀疏时排出热量,则声波得到加强;反之声波稠密时排出热量,在声波稀疏时吸入热量,则声波得到削弱。当然,实际的热声理论远比这复杂的多。
热声技术的应用是相当丰富的,热声能量转换技术将会给包括制冷工业在内的整个能源工业带来很大的影响,它的简单、环保、节能高效的特性符合当今时代的需要,当然就目前的现状而言,由于设计水平远没有达到最优化的程度,材料的选择及制造技术都还在完善之中,而普通的制冷系统经过上百年的发展和改进,热声制冷的单件成本会高于普通传统制冷装置,但随着材料的选择和制造工业艺的日趋成熟,可以肯定热声制冷机会具有极大的成本优势。
5、国内制冷技术研究的状况
我国空调制冷行业走的是与我国家电企业相同的从技术引进到仿制的过程,虽然在生产规模上我国空调企业已经比较大,但是在核心技术方依然依赖外国。目前尚未有国内企业对新型制冷剂或者新型制冷技术进行深入研究开发并申报相关专利。我们与国外的差距并不仅是技术开发方面的差距,而更在于创新观念上的差距。总的来说,我们虽起步较晚,但发展也比较快,但离自己完全掌握核心技术还有很长道路。